LowpT: Chasing the $\Delta \phi$ excess #### Lina Galtieri, Bill Quayle, Simone Pagan Griso Outline: Excess: 28 +- 12 events Looking at shapes of distributions for data and background in the 2011 sample (2011 analysis) Focusing on a few plots for today ## 2011 Data and backgrounds #### Unstacked distributions of data and backgrounds ### e-mu and mu-e channels •_ Splitting the e-mu in ehi-mlow and mhi-elow showed that all of the excess is in events with a subleading muon. ### Studies of the excess Many checks have been made: No detector effects have been found No time dependence (B-K and L-M periods agree within stat) Excess is already evident at the Jet Veto level and more....NO SMOKING GUN WAS FOUND Major backgrounds are the WW background and the W+jets #### WW Background: Agreement between data and predixtion in Control Regions has been checked Alternative CR have been looked at tau polarization has been checked #### W+jets: Remains the prime suspect for the excess. # Lepton Isolation and Impact parameter - The excess is in the 0.6-1.2 $\Delta\Phi$ region. - Isolation and d0 significance are plotted in bins of $\Delta\Phi$ - No dependence on the bin of $\Delta\Phi$ is observed for the isolation - No tail of the d0 significance is observed. Heavy flavor not major component of background. - Charm can still contribute. D_s too small. ### STUDY of the MT CUT - For the nominal analysis a dependence on the MT has been suggested. In particular a cut at MT > 90 GeV. - At Jet Veto level, the distributions for the SubL μ or e look somewhat different for the lowpT analysis. Narrower for the mu-e channel in the data, not in the expectation. - These are 2011 data and are NOT BLINDED Plot on the right is data only. ### MT Dependence of $\Delta\Phi$ Distribution m Sublead event (left), e SubLead (right) at Jet Veto Level. The MT < 90 GeV events peak to the right of Dphi=1.0 where the excess occurs in both distributions. This agrees with the plots on the previous page where we see a small excess only in the e-mu events, at MT>90. ### Summary - Looked at lepton isolation and impact parameter significance of the 2011 low Pt data in bins of $\Delta\phi_{||}$. Found no dependence on $\Delta\phi_{||}$ - Looked at MT dependence of the excess as a function of $\Delta\phi_{II.}$ Found that MT < 90 GeV events do not contribute to the excess in the e-mu channel. # Backup Slides # **Backup Slides** ## Flavor Dependence of Excess The excess in the 2011 data is mostly in the ehi-mulow channel #### Cutflow for different flavors | Lepton channel | ee | μμ | eμ | all | | |--|-----------------|----------------|----------------|----------------|-------------------| | Cut 11 | | | | | | | signal | 2.2 ± 0.2 | 5.1 ± 0.3 | 13.3 ± 0.9 | 20.6 ± 1.3 | | | Total Back | 159 ± 24 | 271 ± 33 | 770 ± 114 | 1201 ± 170 | | | observed | 144 | 263 | 828 | 1235 | | | Jet Veto | | | | | | | signal | 1.4 ± 0.1 | 3.3 ± 0.3 | 8.9 ± 0.8 | 13.6 ± 1.2 | | | Total Back. | 41 ± 9 | 80 ± 15 | 255 ± 63 | 376 ± 85 | | | observed | 43 | 81 | 282 | 406 | | | $P_{T,ll} > 45,30 \text{ GeV}$ | | | | | | | signal | 0.76 ± 0.08 | 1.6 ± 0.2 | 7.5 ± 0.7 | 9.8 ± 1.9 | 1 | | Total Back. | 9.7 ± 3.1 | 15 ± 2 | 90 ± 10 | 115 ± 14 | <pre>excess</pre> | | observed | 6 | 20 | 117 | 143 | CAUCUU | | Final Sample, with $\Delta \Phi < 1.8$ | | | | | | | signal | 8.9 ± 0.8 | 0.7 ± 0.1 | 1.6 ± 1.1 | 6.6 ± 0.6 | | | Total Back. | 9.3 ± 3.0 | 14.2 ± 2.3 | 73 ± 8 | 96 ± 11 | <pre>excess</pre> | | Observed | 5 | 19 | 100 | 124 | | No excess in ee, excess in both $e\mu$ and $\mu\mu$